
Report on current software and practices (task 1)

NMI-3 Workpackage 6 FP7/NMI3-II project number 283883
November 2012 - R. Leal and E. Farhi

Table of Contents
A Software for neutron data analysis...2

A.1 Software development status..2
A.2 Software OS and Installation...2
A.3 Software programming features...3
A.4 Usability and Graphical User Interfaces..5

B Practices of the software developers..6
B.1 Coding and Hosting..6
B.2 Testing..7
B.3 Documentation...7
B.4 Code reuse and duplication..8

Abstract

In this report, we have evaluated a selection of data analysis software for neutron scattering
experiments. The practices used to develop and maintain the software are also analysed in order to
define a set of recommendations to be used in further projects. This reports fulfils the Task 1 of the
work-package and partially covers the Task 2.

The criteria used for the software evaluation are Deployment / installation, Usability, Functionality,
Maintenance and Expandability. The criteria used for the software practices are related to version
control, points of failure, testing, documentation, and code duplication.

FP7/NMI3-II WP6 – page 1/8

NMI-3 Workpackage 6 FP7/NMI3-II

A Software for neutron data analysis

The neutron scattering software selected for this analysis was mainly those distributed in the ready
to run LiveDVD [http://nmi3.eu/about-nmi3/other-collaborations/data-analysis-standards.html]. See
Table 1 for the list of software evaluated.

We chose to group the software in the following fields of research (ordered from the highest number
of users to the lowest):

1. Diffraction
1. Powder
2. SANS
3. Single-crystal

2. Spectroscopy
1. Time-of-flight
2. Triple-axis spectrometer

3. Reflectometry
4. Backscattering
5. Spin-echo
6. General use, that is software that cover more than one field, or can be used independently of

the type of data set.

Table 2 classifies the software according to the field of research.

A.1 Software development status

Table 3 illustrates the overall status of the tested software. A fair part of the projects are not active
any longer, others are merely active for bug-fixes and just a few appear to be actively developed
(e.g. Mantid, Sasfit/sansview, McStas, iFit, LAMP, FullProf suite, Vitess). Mantid is to our
knowledge the only one that involves a serious community of developers of about twenty full time
active developers.

A.2 Software OS and Installation

All the software evaluated in this report were tested under Linux Ubuntu 12.04 operating system –
the same operating system present on the live CD available on the NMI3 website. According to the
web sites where those applications can be downloaded, all the software can run in the three
principal operating systems (windows, Mac OS X and Linux). However, for Linux and according to
our tests, not all binary files can be executable out of the box. Normally due to back compatibility
issues, the already compiled software written in C++ or Fortran may have issues with binary shared
libraries (i.e. libstdc++ and libgfortran).

This problem is actually present in any modern Linux version. It arises when users try to run a
legacy program that was compiled against an old shared library (in an older Linux version), usually,
libstdc++ or libgfortran. This can usually be fixed by recompiling again the software from the
source (when it is available). In our opinion, however, this may put off prospective future
inexperienced users.
Another issue, that the inexperienced users may face under Linux and Mac OS X, is the amount of
extra libraries required for some programs. Windows packages also suffer from this dependency

FP7/NMI3-II WP6 – page 2/8

http://nmi3.eu/about-nmi3/other-collaborations/data-analysis-standards.html

issue, in a lesser extent, by relying on DLL files which may be system dependent. The only practical
solution for developers to overcome this issue is either to reduce the number of dependencies or
bundle the software with all the necessary dependencies. The latter may be impracticable due to the
size of some external libraries.

A few software distribute the Linux version as RPM or/and DEB packages. Those packages are
usually capable of calculating dependencies and fetch transparently the necessary libraries from the
internet before installation. However, these packages are often Linux version dependent, and not all
versions are supported by the developers.

Bundled software, such as LAMP or iFit, are distributed in a single package including all external
dependencies and, regarding its size, may be beneficial for users with limited computer skills.
Lamp for example, has a live update feature, which fetches the last version from the internet and
updates the program transparently for the users.

A.3 Software programming features

Several programming languages and libraries are present in this study. As expected the majority of
the legacy programs are written in procedural languages such as Fortran. Not only in the context of
this study, but in general, software that started to be developed in the 70-80s, are mostly Fortran
based. Despite the widespread use of modern technologies to wrap Fortran code and create bindings
in scripting (interpreted) languages with little programming effort, some active software packages
are still developed in Fortran (e.g. CrysFML library and FullProf Suite).

Proprietary frameworks are also present in this report. IDL was a platform of choice in the 90s for
scientific development. LAMP and DAVE are two programs that use that language. The Matlab
language is also used, as two recent projects are based on this platform (iFit and Grasp). These
software can be run without purchasing the Matlab/IDL platform, but advanced development may
require a purchased licence. Rather high inherent costs can thus prevent a certain number of
possible software developers to contribute to the code. Yet, LAMP and Grasp, for example, still
feature a large community of users. The simplicity and power of iFit starts to attract a significant
number of more experienced users accustomed to the Matlab platform.

Java code is quite unusual in the scientific environment. In this study, only the ISAW platform and
the triple-axis instrument simulator vTAS were implemented in Java. ISAW developers added the
Jython scripting language support to facilitate the customisation of ISAW at other laboratories.
Jython has the same syntax as python, however it does not provide support for other python
packages, such as the popular Numpy or Scypy.

Python tends to be indeed the favourite programming language among scientists for recent software
(e.g. GSAS-II, GenX and many others not covered in this report). The simplicity of Python
programming allied to scientific packages (e.g. scipy, matplotlib, which mimic many features of
proprietary packages such as Matlab) has made python scripting very popular. A great effort is
being devoted to port scientific packages to Python (RPy for the R Project for Statistical
Computing, SymPy for symbolic mathematics, Biopython for biological computation, etc.).

However, Python as an interpreted language performs usually slower than compiled languages (e.g.
Fortran, C or C++). It is generally accepted than Python performs between 4 and 100 times slower

FP7/NMI3-II WP6 – page 3/8

than C++. Some packages compiled in, usually, C++ and C (e.g. numpy) and integrated in python,
can help improve performance when used to store and manipulate large datasets. Yet, recent
software, such as Sansview and Mantid, have taken the decision to develop the core infrastructure
in C++ and build python bindings to allow users/scientists to contribute and write their own scripts
in Python. In Mantid, some of the components, such as GUIs and algorithms, are indeed written in
Python.

The Frida software has been developed in C++ and has recently migrated to the most recent version
of the standard of the C++ programming language (C++11). Although this might create some issues
with old version of GCC, C++11 introduces new features to facilitate the software development. We
believe that the C++/Python combination might be wide spread in the coming years.

Some analysed software is still coded in procedural programming languages (non object oriented,
i.e., clear separation between data and functions) such as C and Fortran. Despite the simplicity of
the development and the easiness to keep track of program flow, procedural languages lack clear
modular structure and the abstract data types where implementation details are hidden, which in
turn reduces extensibility.

A great portion of the analysed code started to be developed a few decades ago, to facilitate and
automate certain tasks. Due to the continuous requirements for new features, these programs have
grown on the same basis (i.e., unstructured, design-less). Although the presence of this legacy code
(robust code proven by decades of usage and debugging) does not represent a problem, still
developing new functionalities upon this paradigm at present can be seen as unnecessary effort and
an increased additional complexity. The software developed following this approach use lexically
and syntactically complex languages (e.g. Fortran). It is usually agreed that the non-use of object
oriented programming (OOP) make the code unstructured, difficult to read and extend, and very
risky to modify.

Despite these drawbacks, there are still ongoing development in procedural languages (e.g. Sasfit,
McStas, FullProf Suite). It is clear that the lack of object oriented design increases the difficulty to
understand what are the main functions of the code and exposes unnecessary features, which
otherwise would be abstracted. Notwithstanding, some of these software developers tend to
organise the software in folders to keep the functionalities organised.

Mantid appears to be the unique project that follows a strong object-oriented design. Although the
Mantid design was inspired by the GAUDI (http://proj-gaudi.web.cern.ch/proj-gaudi/) platform at
the LHC- Geneva, nowadays both architectures are quite different from each other. Mantid recoded
some of the concepts from Loki library (http://loki-lib.sourceforge.net/) and POCO library
(http://pocoproject.org/) and takes advantage of boost smart pointers (http://www.boost.org/).
Several “Design Patterns” (Abstract Factory, Proxy, Command) from the book “Design Patterns:
Elements of Reusable Object-Oriented Software” are implemented. The Template definition and
specialisation (Abstract Factories and Singletons) is also observable within the main components. In
Mantid, however, the object-oriented design appears to be pushed to the extreme. In some peculiar
situations, Mantid overuse class heritage where class composition would perhaps be a better
solution. Very often one can see several levels of heritage making the code quite complex to
understand. This is a known problem of OOP: over-use (or indeed abuse) of inheritance when
composition is clearly superior for object designs.

FP7/NMI3-II WP6 – page 4/8

http://www.boost.org/
http://pocoproject.org/
http://loki-lib.sourceforge.net/
http://proj-gaudi.web.cern.ch/proj-gaudi/

A.4 Usability and Graphical User Interfaces

It is a fact that the neutron sources are being visited by a growing number of non expert users. In
our opinion, very few software seem adequate to this type of users. Non expert users often
concentrate on the scientific problem in question and not on the technical details of data processing
and evaluation. None of the analysed software, except LAMP, presented more than one possible
user interface (e.g. normal and expert mode).

This fact led us to think that the majority of the software described here is designed by an isolated
scientist (or a few...) who tend to work in small and focused groups. The collaboration or interaction
with others (special possible future software users) tend to be very limited. The majority of the
oldest software was built and maintained by a highly skilled single person and there is limited
knowledge sharing. This can be seen as a single point of failure in the software life-cycle.

The frequent result of this methodology is a very complicated software to use, developed without
thinking on the inexperienced users. The developer appears to assume that most users share the
same degree of knowledge.

Just a limited number of software, if any, appears to include non-expert users in the requirements
and development process. Mantid, for example, has been including the feedback of instrument
scientists in the development process and just now (5 years after the start of the project) is thinking
of integrating the feedback of some users in the development tasks. Often, this feed-back happens in
the find-error/fix bug and new feature requirement by mean of email exchange.

A great part of the tested software provide a GUI interface. Exception occurs for Frida, PDFfit, iFit
and GSAS. The latter has no GUI, but a graphical user interface (EXPGUI) is available as a
separate program.

Mantid features two separate and independent components: the Mantid Framework, a standalone
library with python bindings, which allow users to load and process data through a Python console;
and 2. the MantidPlot, a data analysis and scientific visualisation solution to interact with the
Mantid Framework.

Java programs, as expected, use the Java native Swing library for interface development. The
programs built under proprietary software use the native GUI system (e.g. Dave, LAMP). Some
“old style” primitive interfaces are coded in TK (either through TCL or Perl). The FullProf suite
uses a limited commercial platform called Winteractor. New GUIs are rather implemented in the
python library wxPython (SANSView, PDFGui, GenX, GSAS-II).

Despite the popularity of Qt in the IT community, only Mantid features a GUI based on this library.
The Qt toolkit is a cross-platform application framework mainly for graphical user interface. It is
natively built in C++ but provides bindings for other languages, including python. To the authors
knowledge, this library is very powerful but has a steep learning curve, making wxPython a very
attractive alternative for scientific software developers.

Almost all of the tested software possesses plotting facilities. Those based in Python often use
matplotlib (GenX, SansView, GSAS-II). Frida for example uses Gnuplot. Sasfit uses TCL/TK blt
tool kit. Java software uses java native plotting libraries. MantidPlot was built as part of QtiPlot and
uses its integrated library for plotting. It also links to Vates (a customised version of Paraview) for

FP7/NMI3-II WP6 – page 5/8

3D visualisation. Commercial platforms use native plotting facilities.

It is worth noting that LAMP has a server side application running at the ill.fr website. It exposes
remotely the main functionalities of the software through an HTML interface. To our knowledge, in
addition to LAMP, only McStas and vTAS provide a web interface. The Mantid team also starts to
consider a rich internet application for the near future. This interface will be more limited than the
current one (for security issues, no python scripting interface should be available).

B Practices of the software developers

As opposed to the software built by software engineers, scientific software is simply a means to an
end rather than the ultimate aim. Such software is used as a tool to progress in research. As a
consequence, scientific software thus lacks of requirements, architecture design and documentation,
which is mandatory in any commercial IT product. The scientific software is usually very
specialised for a particular topic and is rarely extensible or interoperable.

The scientific software based on software architectures using a set of standards common to
enterprise architectures usually fail (e.g. DANSE). These projects typically take too long to develop
and suffer from poor adoption. For scientists, requirements are emerging and constantly evolve
during the whole project. It is thus difficult for software engineers to capture requirements and
design a software solution to be used by scientists.

Mantid appears to be the closest to an enterprise software solution. It is managed by a private
company and counts roughly 20 active developers. The coding teams are based in UK and US are
releasing new features on a regular basis, as suggested by agile development principles. For
developers, the internal complexity of Mantid, added to the large number of contributors, brings
maintenance issues. Such concerns did not arise in any past software, which were reduced in size,
yet very effective with the same scientific knowledge. This may indicate that the overall size of
Mantid is artificial and brings little gain compared to other previous simpler solutions.

B.1 Coding and Hosting

Good practices start to arise. The great majority of the software analysed is hosted by code
repositories (SVN, Mercury or GIT protocols) with commit tracking features (see table 3) .

Few exceptions arise for code that is not freely available: GSAS, vTAS, and part of the Fullprof
Suite are not available for download. Some source code, although available for download through
the source repository, are not freely available, such as in GSAS-II: “GSAS-II routines are copyright
protected, but are available for reuse in other non-commercial codes with appropriate scholarly
acknowledgement”. Most projects adopt a GPL-like licensing scheme.

Despite the development of some software on proprietary development frameworks (IDL, MatLab,
IGOR and PV-wave), the code is available for download. Although the development on such
commercial platforms typically implies the payment of licence fees, the learning curve is usually
not very steep and the scientific tools provided are often seen as a great advantage.
However, we do not think these tools are very adapted for large scale projects. For instance, Matlab
object-oriented design performance has a very bad reputation. It appears that there may be,

FP7/NMI3-II WP6 – page 6/8

depending on the programming methodology, a substantial method call overhead (higher than
mainstream OO languages) making Matlab not an optimum solution for OOP. Yet, we do think that
the code produced on these platforms is of great value if properly incorporated as components in
other applications. Both Matlab and IDL provide run time shared libraries that can be accessed
through other languages. Given the amount of efficient and well tested legacy code available, we
think that this option should be considered for future developments. Also, it is granted that the
learning curve required to code with a high-level language such as Matlab and IDL is assumed to be
definitively shorter than with a more performance-effective lower-level language such as C++. In
total, there is no obvious coding solution, and any software is a complex equilibrium between
coding, maintenance and performance costs. It all depends on the initial design, and the
programmers ability to keep it simple yet efficient.

B.2 Testing

The process of testing and refining software appears to have been forgotten. Almost none of the
software reviewed possesses a UnitTest platform. Exception arises for Mantid which, according to
the best practices, a test must be written for every new functionality. Mantid uses the google testing
platform, including Mock tests.
iFit, although not implementing any specialised UnitTests platform, has a set of test routines. The
same happens with GSAS II and McStas. Other software provide example script files that can be
seen as tests.

Mantid possesses two Jenkins (http://jenkins-ci.org/) Continuous Integration Servers (performing
builds on Windows 32 & 64 bit, Linux & Mac) that perform an automatic build of the Mantid
Framework, MantidPlot and the install packages following each check-in to the Mantid Github
repository. The developer is notified if he or she breaks the build or if the test fails. McStas uses a
simpler similar package for developers notification.

B.3 Documentation

User manuals are often available. Some of them are rather occasional guides than exhaustive step
by step guides though. iFit, for example, provides very good documentation for both beginners and
advanced users. The source code also appears to be well documented. GSAS-II, despite the not-
intuitive interface provide good tutorials for less experienced users.

Some of the code is not intuitive and lacks documentation both in the code and technical
documentation that describes the source code. Comments in the code are generally sparse when
they exist. Some of the commits text to source repository are not very informative either. It is clear
that much has to be done in this area.

Mantid is a typical case of large multi-year, -site, and -million dollar infrastructure project. It started
with a wiki and good documentation, but the will to keep the documentation growing and up to date
appears to be lost. Still visible on the wiki are deprecated features and functionalities that are not
available any more and can mislead inexperienced developers or contributors.

Some software (including Mantid and Sasfit) use auxiliary software, such as Doxygen
(http://doxygen.mantidproject.org/), to generate browsable code documentation. Although useful to

FP7/NMI3-II WP6 – page 7/8

http://doxygen.mantidproject.org/
http://jenkins-ci.org/

navigate through the code and the class dependencies figures (when existing), if the code is not
properly commented, the value of this solution is very limited.

Mantid appears to be the only software presented here that had a software architecture planned.
However the situation to date is rather different from the initial plan and documentation about the
current architecture is missing. The last documentation available about design dates from 2009.
McStas also started with a careful architecture design, which has been kept robust since then.

B.4 Code reuse and duplication

Re-factoring and reusing existing code is a quite general concept nowadays. On the recently
developed software present in this study, two techniques were widely used: 1. the complete recode
of old applications in a new programming language and 2. a “facelift” to the user interface and
introduction of new features keeping the main core of the application (legacy code) unchanged.

The most “shiny” software available to date are either based on the legacy source code with new
interfaces (e.g. EXPGUI interface for GSAS) or full recode of the old application. In GSAS II, for
example, only 5% of the legacy Fortran code was kept. For PDFfit2 the decision was to completely
rewrite the old Fortran-77 PDFfit engine in C++, and create python bindings to facilitate the
production of specific routines and bindings. Mantid was fully built from scratch using the QtiPlot
interface. All the scientific algorithms have been recoded in C++ using the Gnu Scientific Library
(GSL).

Our experience with recent software supports the opinion that a fresh new software will never
perform as better as an old software with 20 or 30 years of testing and fixing. Attempts to “re-invent
the wheel”, as Gumtree and DANSE have failed in past and recoding a new solution is still
considered very risky.

Code duplication and replication is evident throughout this analysis. Duplication of features appears
to increase with the developers number and not only with the project size. Mantid for example uses
a tool called CPD in its integration server to probe for code duplication. The result of running this
tool shows a non negligible amount of duplicated code – probably due to more than twenty active
developers coding (somehow independently) in different places of the world.

It is no surprise to find common, and thus overlapped, functionalities in different software. These
functionalities are often rewritten in different styles, and thus not imported (even if they are freely
available).

Not only from this analysis, but it is common place to see different scientific groups developing
concurrently the same solution, sometimes, forking and customising existing software (e.g. Sassena
at the SNS, an nMoldyn fork). Often, the new solution is worse than that the existing software. One
may thus argue that collaboration and contribution to a solid software package could be a better
solution.

This led us to conclude that collaboration among groups must be strengthen. In the style of the
CERN ROOT package, one could envisage to list all current software exportable functionalities so
that new software could directly choose these as libraries. Such a catalogue could list models,
algorithms, I/O routines, interface design templates, ...

FP7/NMI3-II WP6 – page 8/8

Software

Page 1

Table 1 : Software evaluated

Name Description Site

DAVE Data Analysis and Visualization Environment

Flexible rapid interactive data analysis

LAMP Large Array Manipulation Program

ISAW Integrated Spectral Analysis Workbench software project

A simple library to analyse data

High-performance computing and visualisation of scientific data.

The differential evolution algorithm for fitting X-ray and neutron reflect

manipulate and display up to 20 data files

compute 4D resolution ellipsoid for inelastic scattering instrument

data analysis and modelling

Grasp Reduction and Analysis

Analysing and plotting small angle scattering data (no reduction?)

GSAS General Structure Analysis System

Crystallography Data Analysis Software

EXPGUI Graphical user interface to GSAS

PDFfit2

Monte Carlo Simulation of TAS

Monte Carlo simulations and data analysis

Virtual Instrumentation Tool for the ESS

virtual Three Axis Spectrometer

http://www.ncnr.nist.gov/dave

Frida http://apps.jcns.fz-juelich.de/doku/frida/start

http://www.ill.eu/instruments-support/computing-for-science/cs-software/a

ftp://ftp.sns.gov/ISAW

iFit http://ifit.mccode.org/

Mantid http://www.mantidproject.org/

GenX http://genx.sourceforge.net/

Mfit fit any type of (x,y) data with any fit function (even combinaisons) http://www.ill.eu/instruments-support/computing-for-science/cs-software/a

Mview http://www.ill.eu/instruments-support/computing-for-science/cs-software/a

Rescal/Matlab http://www.ill.eu/instruments-support/computing-for-science/cs-software/a

Sansview http://danse.chem.utk.edu/sansview.html

http://www.ill.eu/instruments-support/instruments-groups/groups/lss/grasp

Sasfit http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html

http://www.ncnr.nist.gov/xtal/software/gsas.html

Gsas-ii https://subversion.xor.aps.anl.gov/trac/pyGSAS

https://subversion.xor.aps.anl.gov/trac/EXPGUI/wiki

FullProf Suite Rietveld analysis of neutron/ X-ray powder diffraction data. http://www.ill.eu/sites/fullprof/

PDFgui Pair distribution function fit (Gui for PDFFit2) http://www.diffpy.org

Python version of PDFfit http://www.diffpy.org

McStas http://www.mcstas.org

Restrax http://neutron.ujf.cas.cz/restrax/

Vitess http://www.helmholtz-berlin.de/forschung/grossgeraete/neutronenstreuun

Vtas http://www.ill.eu/?id=2048

Fields

Page 3

Table 2: fields of application

Diffraction Spectroscopy

Powder Sans SX Time-of-flight 3-axis Spin-echo General Simulation Reduction Analysis

DAVE x x x x

x x x

LAMP x x x x x x x x

ISAW x x

x x x x

x x x

x

x x

x x

x x x

x x

Grasp x x

x x

GSAS x x x x

GSAS-II x x x x

EXPGUI x x

x x x x

x x x

PDFfit2 x x

x x x x x x x x x x

x x x x

x x x x x x

x x

Reflecto. Backscatt.

Frida

iFit

Mantid

GenX

Mfit

Mview

Rescal/Matlab

Sansview

Sasfit

FullProf Suite

PDFgui

McStas

Restrax

Vitess

Vtas

Versions

Page 4

Table 3 : Version tested July 2012

Version

Name stable DevelopmeLanguage Libraries Source code GUI

DAVE v2.0 (2010) Yes (IDL 8, IDL 7.0 No Yes (need IDL lice++

v2.1.4c (2012 C++ Yes No GUI

LAMP 2012 Yes (ftp) IDL 8.1 yes (IDL scripts) Yes (need IDL lice-/+

ISAW v. 1.9.1_12a (Yes (ftp) Java yes (through operators) Yes

1.2 (2012) Matlab Yes (scripts, functions) Yes No GUI

V2.2 (2012) Yes (git) C++, Python Several Yes (Python or C++ algorYes

2.0.0 (2011) Python Yes

2005 No Matlab Yes (routines + fit functionYes (need Matlab +/-

2.1.1 (2012) C++, Python Yes

Grasp 6.60 (2012) Yes (http) Matlab ? Yes (need Matlab +/-

0.93.3 (2011- C BLT for plotting Yes TCL/TK

GSAS 2009 No Fortran ? No No GUI

GSAS-II 0.2 (2012) Python, Fortra ? Yes

EXPGUI 2011 TCL TCL Yes +

2012 Yes Fortran Difficult

2.0-r3067`(20Just bug fixePython Yes

PDFfit2 3.0-r3067`(20No C++, Python Yes

1.12 (2012) PGPLOT (Matlab) Yes (modules) Yes

2011 Yes (http) F77/90 RESCAL, VTAS Difficult Yes through SIMRES

2.11(2011) Yes (http) C Difficult Yes

VTAS 4.1 (2010?) No Java No No ++ / Swing

Extendable

Frida Yes (svn) Yacc, Flex, Bison, GSL, gnuplot

Jython + (Swing)

iFit Yes (svn)

Mantid ++ (Qt)

GenX Yes (svn) wxPython yes (scripts, plugins) +++ (wxPython)

Mfit/MView/Resc

Sansview Yes (svn) NumPy, SciPy, Matplotlib + wxPython

Sasfit Yes (svn) yes (plugins in C)

Yes (svn) WxPython, NumPy, SciPy, Matplo + wxPython

Yes (svn)

FullProf Suite CrysFML, Winteractor Partly (just CrysFM+/- (winteracter)

PDFgui + wxPython

No Gui

McStas Yes (svn) C, Perl Perl-TK

Restrax

Vitess BLTwish, IDL, PV-Wave + (TCL/TK, IDL, PV

Facilities

Page 6

Table 3 : Supported Facilities

Supported / Used in
Name X-ray Neutrons ILL NIST PSI LLB, Fr Isis HMI ORNL SNS ANSTO FRM2 JAEA

DAVE No yes yes yes yes

No yes

LAMP yes yes yes ? yes ? ? yes ? ? yes yes ?

ISAW No yes No ? ? ? ? ? ? ? ? ? ?

yes yes yes yes yes

(muons)yes yes yes

yes yes ?

? yes yes ? ? ? ? ? ? ? ? ? ?

no? yes yes yes

Grasp No yes yes yes yes ? ? yes yes yes yes yes yes

yes yes ? ? yes

GSAS yes yes

GSAS-II yes yes

EXPGUI

yes yes yes ? ? yes yes

yes yes

PDFfit2 yes yes

yes yes yes yes yes yes ? yes yes yes yes yes

yes yes

yes yes yes yes

yes yes

Julich

Frida

iFit

Mantid

GenX

Mfit/Mview

Rescal

Sansview

Sasfit

FullProf Suite

PDFgui

McStas (McXtra

Restrax

Vitess

Vtas

